材料人荐读丨锂空电池大牛盘点及ESI高被引经典综述荐读
锂空气电池原理
在上篇文章材料人报告|一文读懂锂空气电池领域学术流派、实力分布中,我们简单挖掘了关于锂空气电池的SCI发文信息,这篇荐读文章中,一起来盘点下锂空气电池领域有哪些大牛。本文中按作者以通讯作者身份在此领域内入选ESI高被引的文章被引频次之和排名,列举出10名领域内学者。
NO.1 圣安德鲁斯大学 Bruce, Peter G.
上榜理由:引发锂空电池研究热潮,ESI高被引作品12篇,其中以通讯作者身份发表11篇,总被引频次5642(只计算以通讯作者身份入选ESI的文章,下文同上)
上榜作品:
[1] Li-O-2 and Li-S batteries with high energy storage , DOI: 10.1038/nmat3191,被引频次:2032
[2] A Reversible and Higher-Rate Li-O-2 Battery,DOI: 10.1126/science.1223985,被引频次:646
[3] Rechargeable Li2O2 electrode for lithium batteries, DOI: 10.1021/ja056811q,被引频次:625
[4] Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes,DOI: 10.1021/ja2021747,被引频次:602
[5] The Lithium-Oxygen Battery with Ether-Based Electrolytes,DOI: 10.1002/anie.201102357,被引频次:459
[6] An O2 cathode for rechargeable lithium batteries: The effect of a catalyst,DOI: 10.1016/j.jpowsour.2007.06.180,被引频次:378
[7] The Carbon Electrode in Nonaqueous Li-O2 Cells,DOI: 10.1021/ja310258x,被引频次:306
[8] Charging a Li-O2 battery using a redox mediator,DOI: 10.1038/NCHEM.1646,被引频次:180
[9] Li-O2 Battery with a Dimethylformamide Electrolyte,DOI: 10.1021/ja302178w,被引频次:159
[10] Lithium-air and lithium-sulfur batteries,DOI: 10.1557/mrs.2011.157,被引频次:140
[11] The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries,DOI: 10.1038/NCHEM.2101,被引频次:115
NO.2 IBM McCloskey, B. D
上榜理由:ESI高被引作品10篇,其中以通讯作者身份发表3篇,总被引频次1052
上榜作品:
[1] Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry,DOI: 10.1021/jz200352v,被引频次:501
[2] On the Efficacy of Electrocatalysis in Nonaqueous Li-O-2 Batteries,DOI: 10.1021/ja207229n,被引频次:287
[3] Limitations in Rechargeability of Li-O-2 Batteries and Possible Origins,DOI: 10.1021/jz301359t,被引频次:160
[4] Combining Accurate O-2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O-2 Batteries,DOI: 10.1021/jz401659f,被引频次:104
NO.3 中科院长春应用化学研究所 张新波
上榜理由:ESI高被引作品6篇,其中以通讯作者身份发表5篇,总被引频次946
上榜作品:
[1] Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries,DOI: 10.1002/adfm.201200403,被引频次:208
[2] Synthesis of Perovskite-Based Porous La0.75Sr0.25MnO3 Nanotubes as a Highly Efficient Electrocatalyst for Rechargeable LithiumOxygenBatteries,DOI: 10.1002/anie.201210057,被引频次:205
[3] Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries,DOI: 10.1038/ncomms3438,被引频次:199
[4] Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes, DOI: 10.1039/c3cs60248f,被引频次:187
[5] Novel DMSO-based electrolyte for high performance rechargeable Li-O-2 batteries,DOI: 10.1039/c2cc32844e,被引频次:147
NO.4 美国西北太平洋国家实验室 Xiao, Jie
上榜理由:ESI高被引作品11篇,其中以通讯作者身份发表4篇,总被引频次791
上榜作品:
[1] Hierarchically Porous Graphene as a Lithium-Air Battery Electrode,DOI: 10.1021/nl203332e,被引频次:428
[2] Optimization of Air Electrode for Li/Air Batteries,DOI: 10.1149/1.3314375,被引频次:202
[3] Investigation of the rechargeability of Li-O-2 batteries in non-aqueous electrolyte,DOI: 10.1016/j.jpowsour.2011.02.060,被引频次:141
[4] Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes,DOI: 10.1002/aenm.201400993,被引频次:20
NO.5 IBM、SLAC国家加速器实验室 Luntz, A. C.
上榜理由:ESI高被引作品13篇,其中以通讯作者身份发表4篇,总被引频次:880
上榜作品:
[1] Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries,DOI: 10.1021/jz300243r,被引频次:405
[2] Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries,DOI: 10.1063/1.3663385,被引频次:198
[3] Nonaqueous Li-Air Batteries: A Status Report,DOI: 10.1021/cr500054y,被引频次:151
[4] On the Mechanism of Nonaqueous Li-O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li-AirBatteries,DOI: 10.1021/jp306680f,被引频次:129
NO.6 麻省理工学院 Shao-Horn, Yang
上榜理由:ESI高被引作品14篇,其中以通讯作者身份发表2篇,总被引频次:775
上榜作品
[1] Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for RechargeableLithium-Air Batteries,DOI: 10.1021/ja1036572,被引频次:577
[2] Chemical and Morphological Changes of Li-O-2 Battery Electrodes upon Cycling,DOI: 10.1021/jp308093b,被引频次:198
NO.7 滑铁卢大学 Nazar, Linda F.
上榜理由:ESI高被引作品10篇,其中以通讯作者身份发表4篇,总被引频次761
上榜作品:
[1] Screening for Superoxide Reactivity in Li-O-2 Batteries: Effect on Li2O2/LiOH Crystallization,DOI: 10.1021/ja2111543,被引频次:320
[2] Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O-2 batteries,DOI: 10.1038/NCHEM.1499,被引频次:228
[3] Non-Aqueous and Hybrid Li-O2 Batteries,DOI: 10.1002/aenm.201200001,被引频次:177
[4] Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery,DOI: 10.1002/aenm.201400867,被引频次:36
NO.8 美国西北太平洋国家实验室 Xu, Wu
上榜理由:ESI高被引作品10篇,其中以通讯作者身份发表5篇,总被引频次660
上榜作品:
[1] Lithium metal anodes for rechargeable batteries,DOI: 10.1039/c3ee40795k,被引频次:202
[2] Investigation on the charging process of Li(2)O(2)-based air electrodes in Li-O(2) batteries with organic carbonate electrolytes,DOI: 10.1016/j.jpowsour.2010.12.065,被引频次159
[3] Reaction mechanisms for the limited reversibility of Li-O-2 chemistry in organic carbonate electrolytes,DOI: 10.1016/j.jpowsour.2011.06.099,被引频次:122
[4] The stability of organic solvents and carbon electrode in nonaqueous Li-O-2 batteries,DOI: 10.1016/j.jpowsour.2012.05.021,被引频次:101
[5] Effects of Electrolyte Salts on the Performance of Li-O-2Batteries,DOI: 10.1021/jp311114u,被引频次:76
NO.9 汉阳大学 Sun, Yang-Kook
上榜理由:ESI高被引作品11篇,其中以通讯作者身份发表4篇,总被引频次509
上榜作品:
[1] Aprotic and Aqueous Li-O-2 Batteries,DOI: 10.1021/cr400573b,被引频次:170
[2] A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries,DOI: 10.1038/ncomms3383,被引频次:156
[3] Ruthenium-Based Electrocatalysts Supported on Reduced Graphene Oxide for Lithium-AirBatteries,DOI: 10.1021/nn400477d,被引频次:155
[4] Understanding the behavior of Li-oxygen cells containing Li,DOI: 10.1039/c5ta01399b,被引频次:28
NO.10 美国西北太平洋国家实验室 Zhang, Ji-Guang
上榜理由:ESI高被引作品13篇,其中以通讯作者身份发表2篇,总被引频次328
上榜作品:
[1] Electrocatalysts for Nonaqueous Lithium-Air Batteries: Status, Challenges, and Perspective,DOI: 10.1021/cs300036v,被引频次:226
[2] Ambient operation of Li/Air batteries,DOI: 10.1016/j.jpowsour.2010.01.022,被引频次:102
由于小编水平有限,而且数据统计较为繁琐,以上排名和数据难免出错,恳请读者批评指正。
下面,小编为大家介绍10篇锂空气电池领域入选ESI高被引的经典综述
1、Li-O-2 and Li-S batteries with high energy storage[1]
不同可充电电池的实际比能量以及预测行驶里程和成本价
针对锂离子电池的不足,以电动汽车供能应用为着眼点,该文详尽地介绍了两种更具前景的锂电池,即锂硫电池和锂空气电池,它们各有优劣,但相比而言,锂空气电池更具发展潜力。
2、Electrical Energy Storage for the Grid: A Battery of Choices[2]
不同电池放电时间和额定功率的差异
文章介绍了锂空气电池在电网分段储能方面的应用,利用锂空气电池在电网用电低谷期进行储能,高峰期放电,缓解电网供电压力,减少电能浪费。
3、Lithium-Air Battery: Promise and Challenges[3]
锂空气电池原理图
文章主要介绍了锂空气电池可逆工作的原理,及其发展前景和面临的挑战。文章提到几个主要观点:电动汽车用电池最重要的四个指标分别是比能量、造价、寿命(即使用年限和里程)以及安全性;现今实用的电动汽车用电池正由金属镍氢化物向着锂离子电池的方向发展;减少锂空气电池环境污染的四种电池结构;电解质和电池正极材料的电化学稳定性才是制约锂空电池实用化的核心挑战。
4、A Critical Review of Li/Air Batteries[4]
以泡沫Ni为基的锂空气电池气体扩散阴极
该文论述了无水和水基电解质锂空气电池存在的限制,以及锂空气电池作为一个密闭系统所带来的不足。针对这些限制因素,作者提出了锂空气电池未来发展的建设性意见,对制作强健、高储能的锂空气电池,进行了展望。
5、Lithium–oxygen batteries: bridging mechanistic understanding and battery performance[5]
锂空气电池的局限性
本文作者插层反应和转换反应进行锂离子贮存,以及某几种锂空气电池的原理。同时,作者针对锂空气电池存在的不足,进行了较为详尽的阐述和展望。
6、Graphene and Graphene-Based Materials for Energy Storage Applications[6]
石墨烯空气电极的形态
本文主要讲了石墨烯在电能储存上的应用。除了锂空气电池外,文章还介绍了石墨烯在锂离子电池、超级电容器、锂硫电池等方面的应用。对石墨烯电池材料感兴趣的同学,文章难得,不容错失。
7、Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives[7]
不同电解质情况下的四种锂空气电池结构
文章主要介绍了纳米电极在锂离子电池和锂空气电池中的应用,包括它们的前沿进展、面临的挑战和未来发展趋势。
8.Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives[8]
一种锂空气电池,包括暴露在氧气中的锂离子正极材料和多孔负极
文章介绍了怎样利用纳米技术解决锂空气电池中存在的问题、锂空电池的几种阳极材料、插入化合物作为锂离子电池的阴极材料、锂空电池的浸氧阴极材料、电解质的原位性。
9. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries[9]
质子锂空气电池原理图
文章分别介绍了质子锂空气电池、电解质材料及纳米阴极材料的研究现状和机遇、空气脱水膜等锂空气电池最新科技成果。
10. Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries[10]
IBM公司研发的吸气锂空气电池
文章介绍了一种新型锂空气电池,即吸气锂空气电池(air-breathing lithium-air battery)的原理和构造并详细概述了该电池中的迁移和耦合现象。
接下来,我们将继续推进锂空气电池专题,下一其中会带领大家一览锂空气电池最新热点研究,马上回来,不要走开。
参考文献:
[1] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage.[J]. Nature Materials, 2012, 11(1):19-29.
[2] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices.[J]. Science, 2011, 334(6058):928-35.
[3] Girishkumar G, Mccloskey B, Luntz A C, et al. Lithium−Air Battery: Promise and Challenges[J]. Journal of Physical Chemistry Letters, 2010, 1(14):2193-2203.
[4] Christensen J, Albertus P, Sanchez-Carrera R S, et al. A Critical Review of Li/Air Batteries[J]. Journal of the Electrochemical Society, 2012, 159(2).
[5] Lu Y C, Gallant B M, Kwabi D G, et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance[J]. Energy & Environmental Science, 2013, 6(3):750-768.
[6] Zhu J, Yang D, Yin Z, et al. Graphene and Graphene-Based Materials for Energy Storage Applications[J]. Small, 2014, 10(17):3480-98.
[7] Song M K, Park S, Alamgir F M, et al. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives[J]. Materials Science & Engineering R Reports, 2011, 72(11):203-252.
[8] Song M K, Park S, Alamgir F M, et al. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives[J]. Materials Science & Engineering R Reports, 2011, 72(11):203-252.
[9] Wang J, Li Y, Sun X. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries[J]. Nano Energy, 2013, 2(4):443–467.
[10] Yuan J, Yu J S, Sundén B. Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries[J]. Journal of Power Sources, 2015, 278(278):352-369.
本文由材料人编辑部科技情报组提供张文扬供稿,欢迎加入材料人编辑部,各路高手带你玩转学术,欢迎加入“材料人资源共享交流群 425218085”,求助你想要的任何学术资源。
文章评论(0)