天津理工大学叶宁教授团队Science Advances:磷属红外非线性光学晶体设计新策略
【研究背景】
无机磷属化物因其超导、非线性光学、铁电、输运、催化等特性受到的广泛研究兴趣和持续的关注。与硫属化物和卤化物相比,磷属化物具有更大的非线性光学系数,同时这类化合物还具有宽的红外透过范围,使其成为优异的红外非线性光学晶体候选材料。然而,新型磷属非线性光学材料的设计仍面临诸多挑战,尤其是如何获得非中心对称结构和拓宽光学带隙。
【成果简介】
为了解决这一难题,天津理工大学陈金东副研究员和叶宁教授在Science Advances期刊发表了题目为“Achieving strong optical nonlinearity and wide bandgap of pnictides via ionic motif–driven directed assembly of covalent groups”的研究论文,第一作者为博士研究生高利华。该团队提出了新的磷属非线性光学晶体设计策略—构筑非对称离子基元驱动共价基团定向排列,利用非对称离子基元驱动共价基团定向以及刚柔耦合双策略,成功设计并合成了四种新的非中心对称的磷化物:[Sr4Br]2[MII3Si25P40](MII = Mg, Cd)和[Ba3Br][MIIISi10P16](MIII = Ga, In)。这些材料表现出优异的非线性光学性能,倍频强度为传统红外非线性晶体的5.2至7.5倍,光学带隙为1.81至1.90电子伏特,双折射值为0.030至0.051,红外透过可到9微米。
此外,非中心对称结构诱导机制研究表明具有类金刚石静电力场的(Sr4Br)和(Ba4Br)非对称离子基元有效打破了反演对称性,实现了共价四面体基团的同向排列。此外,具有较大基团柔度的第二共价构建单元(MII/IIIP4四面体)可以显著调节非线性光学性质和双折射率,为调节关键参数提供了更广阔的空间。本研究为探索高性能磷属非线性光学晶体材料开辟了新的化学空间。
【研究亮点】
1. 开辟了一个新的磷属化物的化学空间。首次报道无反演对称性的A-M-Pn-X(A: 碱金属,碱土金属;M: 12,13,14族元素; Pn:P, As;X:卤素)相场化合物,并对其线性和非线性光学性质进行了系统的研究。
2. 揭示了新的非中心对称结构诱导机制。在 [Sr4Br]7+和[Ba3Br]5+离子阵列的类金刚石静电场效应驱动下,所有共价基团被定向组装,排列水平高度一致。这种有利的结构导致了大的倍频效应(5.2-7.5 × AgGaS2),适当的带隙(1.81-1.90 eV),合适的双折射(0.030-0.051),综合性能优于所有A-M-Pn体系的非线性光学晶体。
3. 二级共价构建单元(MII/IIIP4四面体)具有独特的键柔度,可以实现对非线性光学性质和双折射的精细调控,为调节材料的关键性质提供了更广阔的空间。
【图文导读】
图1 非中心对称和中心对称结构统计,A-M-Pn-X物相化学空间,离子基元静电势示意图
图2 目标磷化物晶体结构
图3 目标磷化物与类金刚石结构的对比
图4 四面体基团排布和对应的静电势图
图5 光学性能和部分态密度图
图6 目标磷化物与所有已报道的A-M-Pn磷属化物的光学性能比较。
图7 电子密度差以及键柔度-光学性质相关性
【结论展望】
本文设计和合成系列的非中心对称的 A-M-Pn-X相磷化物,展现了这些新型无机磷化物在非线性光学材料方面的优异表现。结构机制分析揭示了具有类金刚石拓扑亚晶格和局部配位几何的 [Sr4Br]7+和[Ba3Br]5+离子基元阵列驱动共价四面体基团的定向排列。此外,化学键分析证实,具有不同键柔度的二级共价构建单元(MII/IIIP4四面体)可以实现非线性光学性质和双折射的精细调节。这项工作开发了一个以前未知的无机磷属化物的研究体系,并为高效设计非中心对称晶态材料提供了一种途径。
文献信息
Lihua Gao et al., Achieving strong optical nonlinearity and wide bandgap of pnictides via ionic motif–driven directed assembly of covalent groups. Sci. Adv. 10, eadr2389(2024). DOI:10.1126/sciadv.adr2389
文章评论(0)