全新OMN材料,“一个演员,两个角色”!!在钙钛矿薄膜制备过程中同时实现结晶调控和缺陷钝化,为客制化功能材料提供了新方法。
一、 【导读】
尽管通过不同的策略,钙钛矿太阳能电池的光伏性能得到了极大的改善,但与传统结构相比,在一致性和效率方面仍有很大差距。目前被广泛接受的钝化,钙钛矿缺陷的方法以及,钙钛矿晶粒的可控生长仍然是进一步提高实际应用设备性能的挑战。在这项工作中,韩国国立Pukyong National University 的Fengwu Liu(第一作者),Sung Heum Park(通讯作者)等人设计并开发了多功能氧基封端melem纳米粒子(OMN)改性剂,并通过反溶剂工程将其加入到了钙钛矿中。OMN 的大比表面积确保了通过调节结晶过程并通过反溶剂彻底钝化大量缺陷来生产出高质量的钙钛矿薄膜。melem纳米粒子提高了 PSC 的光伏性能。此外,高质量的钙钛矿薄膜和出色的缺陷钝化相结合,提高了器件的稳定性。
二、【成果掠影】
相关研究成果以“Oxyl-terminated Melem Nanoparticles as Crystallization Modulators and Passivating Anchors for High-Performance Perovskite Solar Cells”为题发表在Nano Energy上。韩国国立釜庆大学(Pukyong National University)Fengwu Liu为一作,Sung Heum Park教授为通讯作者。
三、【核心创新点】
1.采用自上而下的方法,由氮化碳成功合成了功能化melem纳米颗粒。
2.定制的纳米粒子实现了钙钛矿结晶的调节和缺陷钝化。
3.通过纳米粒子较大的比表面积实现最有效的接触反应。
4.有效提升钙钛矿倒置太阳能电池器件性能。
四、【数据概览】
Fig. 1. (a) Schematic diagram of OMN preparation process. (b)XRD of CCN. (c) FTIR of the powder of CCN and OMN. SEM (d) and (e) TEM images of CCN. (f) TEM of OMN. (g) TEM-EDS mappings of OMN.
Fig. 2. (a) OMN molecular structure and visualization of the ESP result; (b) A schematic illustration of the interaction between OMN and perovskite; (c) Theoretical calculation of molecular interaction between the perovskite precursors (MAI, PbI2) and OMN. The formation energies of OMN-MAI, OMN-PbI2, and PbI2-MAI molecular structures, calculated by DFT.
Fig. 3. (a) Schematic diagram of the preparation process of MA-based perovskite thin film; SEM (b) and XRD (c) of the MA-based perovskite film without and with OMN before the annealing. SEM (d) and XRD (e) of the MA-based perovskite film without and with OMN after annealing.
Fig. 4. FTIR spectra of (a) PbI2, OMN and OMN with PbI2; (b) MAI, OMN and OMN with MAI. XPS spectra of (c) C 1s, (d) Pb 4f and (e) I 3d with and without OMN; NMR spectra of (f) OMN, MAI and OMN with MAI, (g) OMN and OMN with PbI2 and (h) OMN, MAPbI3 and OMN with MAPbI3.
Fig. 5. SEM (a), XRD (b), PL (c) and (d) UV–vis absorption spectra of MA-based perovskite film prepared with different OMN concentrations on glass. (e) UV–vis absorption spectra of the control and the OMN-perovskite film, respectively. (f) Contact angle of MA-based control and with 1.0mg/ml OMN-perovskite film on CB.
Fig. 6. (a) Schematic structure of the MA-based device. Cross-sectional SEM of the (b) Control and (c) modified MA-based device. J-V curves of the PSC devices using different OMN concentrations optimized for (d) MA-based and (g) CsFAMA-based active layers. Forward and reverse J-V scans of the best performing control devices and OMN-modified (e) MA-based and (h) CsFAMA-based PSCs. IPCE spectra and integrated photocurrents of the best performing control devices and OMN-modified (f) MA-based and (i) CsFAMA-based PSCs.
Fig. 7. Different irradiation intensities for MA-based device of (a) JSC and (b) Voc. (c) Dark J-V curves for MA-based control and OMN-modified PSCs. Dark J–V characteristics of MA-based (d) control and (e) OMN-modified device (the inset shows the device structure). (f) Stability testing of MA-based PSC devices at room temperature and in a nitrogen environment (H2O 30 ppm, O2 30 ppm).
五、【成果启示】
客制化具有多功能钝化能力的氧基封端 melem 纳米粒子,并将其用作改性剂。然后,通过与抗溶剂工程相结合,将这些纳米颗粒融入到了钙钛矿层中。这项工作强调了OMN 如何促进中间相的生成,以及如何在未退火阶段减缓钙钛矿晶体的结晶速度。同时,在退火过程中,OMN 中的各种官能团可钝化钙钛矿薄膜中的各种内部缺陷,从而显著降低缺陷密度。因此,基于 MA 和 CsFAMA 器件的 p-i-n 型钙钛矿太阳能电池的 JSC、VOC 和 FF 都得到了有效改善。
在 DFT 计算的帮助下,这项研究提供了一种新方法,通过制备定制功能化纳米粒子,实现更有效的钝化和更高质量的钙钛矿薄膜。它证实了通过设计正确的添加剂来帮助器件制造,可以在 P-I-N 结构器件中实现稳定的光伏性能。
文献链接:“Oxyl-terminated Melem Nanoparticles as Crystallization Modulators and Passivating Anchors for High-Performance Perovskite Solar Cells”(Nano Energy,https://doi.org/10.1016/j.nanoen.2023.109220)
本文由W供稿
文章评论(0)