变革性技术关键科学问题重点专项公布13个研究方向 国拨经费3.9亿
日前,科技部发布了《科技部关于发布国家重点研发计划变革性技术关键科学问题重点专项2017年度项目申报指南的通知》。根据该通知,2017年变革性技术关键科学问题重点专项将围绕化学键精准重构、超构材料、精确介观测量、新型太赫兹辐射源等方向部署13个研究方向,国拨总经费约3.9亿元。同一指南方向下,原则上只支持1项,仅在申报项目评审结果相近,技术路线明显不同,可同时支持2项,并建立动态调整机制,根据中期评估结果,再择优继续支持。
以下是5项材料相关研究方向
1. 电-热耦合催化能源小分子化学键的精准重构
研究内容:能源小分子的活化和转化是化石能源高效利用的核心,常规转化过程存在高耗能、高耗水、低选择性等瓶颈;发展基于电-热耦合催化分子选键活化新方法,促进甲烷和二氧化碳等碳基小分子中碳-氢、碳-氧和碳-碳键精准重构,实现温和条件下甲烷无氧活化和转化的变革性方式,发展甲烷与二氧化碳以及甲烷与煤碳中性转化的原子炼制新过程。
考核指标:利用电场等外场激发与纳米和单原子活性中心催化相耦合,实现温和条件下甲烷的活化和转化,阐明自由基反应和外场增强活化等非常规甲烷活化机制;突破甲烷利用的传统方式,与煤转化或二氧化碳转化过程相耦合,实现转化过程的碳、氢、氧自身平衡(碳中性),有效降低碳基能源利用中的二氧化碳排放和水的消耗;发展外场作用下表界面反应的原位表征技术和方法,对表面催化反应的初生产物、中间物种以及过渡态进行有效探测,实现在原子分子层次上对变革性反应过程的理解。
2. 数字编码和现场可编程超构材料
研究内容:超构材料是物理和信息领域的前沿方向,但现有的基于等效媒质超构材料属于模拟体系,很难实时地调控电磁波。本项目建立数字编码和现场可编程超构材料新体系,包括:数字编码超构材料对电磁波近远场的调控理论;数字编码超构材料的信息论操作及数字信号处理运算;高比特位数字编码和现场可编程超构材料的设计方法及物理实现。
考核指标:建立数字编码超构材料对电磁波近远场的调控理论并探索其高效求解方法,挖掘信息论操作和数字信号处理给数字编码超构材料调控电磁波带来的新物理特征和新应用潜力,制备高比特位数字编码和现场可编程超构材料(编码切换时间小于30 ms,工作频率覆盖X、Ku、Ka波段,编码状态误差小于10%);发展双频数字编码和现场可编程超构材料、各向异性数字编码和现场可编程超构材料、频(时)空联合数字编码超构材料、以及幅相联合数字编码超构材料;研制基于数字信号处理、现场可编程门阵列(FPGA)控制模块和数字编码超构材料软硬件一体化的现场可编程信息系统原型。
3. 人体器官芯片的精准介观测量
研究内容:探索人体器官芯片生化特征介观测量与表征新原理与方法,从分子、细胞到组织、器官甚至系统的多个层次,建立具有多参数、多维度、多模态的高分辨率在线精准检测手段,以实现对微器官的实时监控和对微结构仿生状态的客观评估,并研究器官芯片的模型特征,验证其与人体组织的相似性,为药物筛选和疾病治疗提供技术支撑。
考核指标:从分子、细胞到组织、器官甚至系统的多个层次,建立可与肝脏、心脏等器官芯片集成的多模态精准介观测量与表征全新技术体系,具体包括:1)发展在毫米量级的三维空间视场下空间分辨率达到亚细胞量级的快速成像技术;2)发展成像范围在毫米量级的高分辨率多模态检测,空间分辨率亚微米水平;3)发展复杂环境下分子水平的超高时空分辨率检测新技术,实现对人体芯片中生物表界面的介观测量;4)发展三维智能仿生支架材料,原位构建人体芯片在线检测技术,检测指标不少于5个。实现对可用于药物筛选与疾病疗效评价的人体组织/器官芯片进行示范性的筛选评估。
4. 界面调控与构筑实现材料素化的原理及演示验证
研究内容:跨尺度界面(晶界、相界)结构的形成、演化、调控规律;界面数量及分布、结构、成分与材料力学性能和物理性能间的关系;界面调控实现高温合金素化原理验证;界面调控实现热电材料素化原理验证。通过界面调控与构筑实现材料素化,突破材料发展过度依赖合金化的瓶颈,减少稀、贵、毒元素的使用,促进回收再利用,实现可持续发展。
考核指标:研究晶界调控方法以及合金元素在晶界与相界的偏析规律,在三种典型不同材料中实现材料的低能晶界含量超过50%以上,发展出高稳定性相界控制方法。建立不同类型界面与材料的力学性能、物理性能之间的关系。围绕高温结构素化,在铸造高温合金中实现合金不含铼和钌,合金密度≤8.6g/cm3、高温强度高于1100℃/137MPa,持久寿命≥120h;在变形高温合金中实现Co含量≤20%,特殊晶界含量>30%,760°C的σ0.2>900MPa,760°C/480MPa持久寿命>450h。降低高温合金对稀贵资源的依赖,降低高温合金成本。在Bi2Te3合金体系中通过界面调控实现现有无机热电材料优值系数(ZT)值提升20%以上。发展环境友好型和资源节约型新型热电材料。
5. 面向生物医学应用研究的新型太赫兹辐射源
研究内容:面向太赫兹波生物效应及检测等生物医学应用,探索自由电子与新兴材料及新型结构互作用产生太赫兹辐射的物理机制,揭示变革性太赫兹辐射的基本规律,突破传统太赫兹辐射源的技术瓶颈,产生宽频带可调谐、大功率、连续波小型化和具有一定无衍射长度的相干太赫兹辐射。
考核指标:研发出频段可调谐、连续波、室温工作、瓦级功率输出、具有一定无衍射长度的相干太赫兹辐射源。
完整的指南请点击下载:“变革性技术关键科学问题”重点专项2017年度项目申报指南
材料牛编辑整理。
文章评论(0)